INDEX

A	Cerebral biopsy, 10
	Cerebral toxoplasmosis, 9–10
Acute toxoplasmosis, 6	Clostridial spores, 60
Alaska pink salmon, 139	Clostridium difficile
Alaska pollock gelatin, 138–139	animal feed, 60
Animal feed	detection, food
C. difficile, 60	bacteriologic culture, 55
E.coli O157:H7, pathogen transmission,	enrichment broths, 55-56
72–73	recovery rates, 55, 57
rat feeding experiments, 38	environmental strains/organisms, 57, 60
Asthenia, 7	food contamination, 60–61
Atlantic cod, 138	genotypes, 61–62
Atlantic salmon, 138	human colonization, 62–63
В	isolation, 54
ь	meat and meat products, 57-59
Bacteriophage	Cold-water fishes, 129-130
high-level shedders, 81–82	Collagen
preharvest control, 92–93	α-chains, 122–123
Bill and Melinda Gates Foundation (BMGF), 23	amino acids, 123
Biofortification	β-and γ-chain, 123
anthropometric measurements and	fibrils, 121–122
blood tests, 43	gelatin conversion
Burkina Faso, 44–45	alkali and acid process, 125
cereal, 42–43	drying and grinding process, 126
CMF, 44	extraction method, 125-126
definition, 23	pretreatment process, 125
lysine plus threonine, 42	removal of unwanted materials, 124
micronutrient deficiency, 46	hydroxyproline, 123
PDCAAS, 45–46	isoelectric point, 137
QPM, 44	molecular structure, 122
transferrin and hemoglobin levels, 43	molecules arrangement, 121–122
wheat bread, 43	stabilization, hydrogen bonds, 123–124
Biosorghum project, 23–24	structural protein, 25
Bradyzoites, 3–5	triple helix structure, 122
	tropocollagen, 122
C	types, 124
Carcass contamination	Cow's milk formula (CMF), 44
C. difficile, 60–61	_
E. coli O157:H7	D
fecal shedding and hide prevalence,	DDG. See Dried distillers grain
70, 89	with/without solubles
probability, 81	Direct/indirect fecal–oral exposure, 75
Carp skin gelatin, 139	Dried distillers grain with/without solubles
C. difficile infection (CDI), 54	(DDGS), 84–85

E	risk factors, 98
El . l . l . l	seasonality of shedding
Electrolyzed oxidizing water, 74	cattle feeds, 77
Enterobacteriaceae, 93	cooler temperatures, 77–78
Escherichia coli O157:H7	heat stress, cattle, 78
animal stress	human foodborne disease, 80
catecholamine norepinephrine, 87	melatonin, 78
heat stress, 88	percentage of samples, 78–79
immune response, 87	physiological responses, animal, 78
livestock response, 88	prevalence, 77
microbial food safety risk, 86	sorbitol fermentation, 70
practical implications, 87	sources and transmission, cattle
weaning, 87	animal feed, 72–73
antimicrobial carcass interventions, 97	drinking water, 73–75
bacterial diarrhea, 68	feces, manures, and soils, 75–76
beta-agonists, 88–89	flies, 71–72
diet effects, shedding and persistence	on-farm ecology, 70
barley grain, 84	potential reservoirs/vehicles, 70–71
cattle fed barley vs. cattle fed cracked,	prevalence, 71
84, 86	transportation and lairage, 98-99
distillers grains, 84	
energy-dense grain rations, 84	F
gastrointestinal tract and fecal	
incidence, 86 potential effects, 83–84	Fecal-oral transmission, 75
ruminal fluid, 83	Feedlot calves, 61
	Fish gelatin
ruminant animals, 82–83 WDGS and DDGS, 84–85	chemical characteristics
fecal shedding, 70	amino acid composition, 134
feedlot cattle, 89	peptide size, quality, 134–135
high-level shedders	common and potential sources, 129–130
bacteriophage, 81–82	effects of processing conditions
cattle hide contamination, 81	alkali and acid treatments, 135–137
chain of events, 81–82	extraction temperature and duration,
colonization, 81	137–138
feedlot pens, 80	gelatin extraction flowchart, 135–136
mathematical modeling, 80–81	storage and transportation, 138
super-shedders, 80, 82	physical attributes gel strength, 130–132
ionophores, 89	melting and gelling temperature,
modes of transmission, 69	132–133
outbreak, water, 69	viscosity, 131–132
preharvest control	quality vs. mammalian gelatins, 138–139
bacteriophage, 92–93	Freeze drying method, 140
brown seaweed product, 95	Frequency sweep tests, 133
chlorate, 93–94	rrequency sweep tests, res
cottonseed, 94	G
esculitin and esculin, 95	G
manure and cattle pen surface	Gelatin
treatments, 95–97	biopolymers, 120
neomycin sulfate, 94	characteristics, 127
probiotics/direct-fed microbials, 91–92	chemical composition, 120
rumen modifiers, 94	collagen-gelatin conversion
vaccines, 90–91	alkali and acid process, 125

drying and grinding process, 126	L
extraction method, 125–126	L
pretreatment process, 125	Leishmania gondii, 3
removal of unwanted materials, 124	Lymph node enlargement, 7
gelatin market, 128	M
gelation mechanism, 126	112
industrial applications, 128–129	Mediterranean Intensive Oxidant Study (MINOS), 27
manufacturing, raw material, 127–128	Multivariate regression analysis approach, 7
parent molecule, collagen α-chains, 122–123	Muscle mass
amino acids, 123	amino acids, 26–27
β-and γ-chain, 123	death, human starvation, 27
fibrils, 121–122	maintenance, 28
hydroxyproline, 123	malnutrition, 26
molecular structure, 122	metabolism, genesis, 26
molecules arrangement, 121-122	MINOS (see Mediterranean Intensive
stabilization, hydrogen bonds, 123–124	Oxidant Study)
triple helix structure, 122	obesity relationship, 27
tropocollagen, 122	protein loss, 28
types, 124	rapid starvation/dietary protein
quality determination, 139-140	depletion, 26
Gelatin hydrolysate, 134	N
Gelation mechanism, 126	14
Gel strength	Neomycin sulfate, 94
bloom jar, 130–131	<i>N</i> -(<i>n</i> -butyl) thiophosphoric triamide
bloom strength, 130	(NBPT), 96
different instruments and probes,	O
131–132 measurement, standard method, 130	O
Glucocorticoid dexamethasone, 87	Ocular toxoplasmosis, 8, 10
Grand Challenges in Global Health, 23	Oocysts sporulation, 5
Grand Chancinges in Global Ficulti, 25	Osteopenia, 27
Н	P
Headache, 7	Paracitophorous vacuole 4
Heat drying method, 140	Parasitophorous vacuole, 4 Pharmaceutical gelatin, 129
High-level shedders	Preharvest control
bacteriophage, 81–82	bacteriophage, 92–93
cattle hide contamination, 81	brown seaweed product, 95
chain of events, 81-82	chlorate, 93–94
colonization, 81	cottonseed, 94
feedlot pens, 80	esculitin and esculin, 95
mathematical modeling, 80–81	manure and cattle pen surface treatments,
super-shedders, 80, 82	95–97
Houseflies, 71–72	neomycin sulfate, 94
Hydroxyproline, 123–124, 134	probiotics/direct-fed microbials, 91–92
*	rumen modifiers, 94
I	vaccines, 90–91
Isoionic point, 137	Proline, 123–124, 134, 139
•	Protein content and composition
K	PDCAAS calculation, sorghum, 33, 36
Kafirin–tannin complexation, 42	sorghum <i>vs.</i> other cereals, 32, 34–35 tryptophan, 36
Nammi-tannin Complexation, 42	a y proprian, 50

Protein digestibility	1985 FAO/WHO/UNU vs. 2002
changes, protein body, 39	WHO/FAO/UNU requirements,
cross-linking, kafirin prolamin proteins,	28–29
36–37	fat, 26
diets, 38, 41	indispensable amino acids, 24
disulfide bonding, 36	meta-analysis, 28
grain improvement, 37	muscle mass, 26–28
gruels, 38	
	nitrogen and amino acid needs, 28
high-vs. normal-lysine sorghum, 37	nitrogen-containing compounds, 25
nutritional parameters, 38	nutrition security planning, 28
rat feeding experiments, 38	pregnancy and lactation period, 30
sorghum lines, 39–40	protein types, 25
transgenic biofortified sorghum, 41–42	safe level protein recommendation, 29
wet cooked sorghum, 36	scoring patterns, amino acid, 30
Protein Digestibility Corrected Amino Acid	quality
Score (PDCAAS)	chemical mutagenesis, 39
biological value prediction, 31	in vitro pepsin method, 41
calculation, sorghum, 31–33	lysine-rich protein synthesis, 40
protein quality, 32, 34–35	and measurement, 31–32
transgenic biofortified sorghum, 42	protein body change, 39
Protein Efficiency Ratio (PER), 31	protein content and composition, 32,
Pulsed-field gel electrophoresis (PFGE)	34–36
C. difficile genotypes determination,	protein digestibility, 36–39
61–62	
	sorghum lines, 39–40
patterns, 72	sorghum vs. other cereals, 34–35, 40–41
0	stunted and underweight children,
Q	Africa, 22–23
Quality Protein Maize (QPM), 44	Stress and strain sweep tests, 133
	T
R	
Rheological method, 132–133	Tachyzoites, 3–4
Ribotyping, 61–62	Tannins, 42
Ricotyphig, or oz	Temperature sweep tests, 133
S	Thermoreversible gels, 127
5	Thymol, 96
Sorghum protein	Tilapia skin gelatin, 138
biofortification	Time sweep tests, 133
anthropometric measurements and	Toxoplasma gondii. See also Toxoplasmosis
blood tests, 43	control in foods, 13–14
Burkina Faso, 44–45	life cycle
cereal, 42–43	asexual developmental cycle, 3–4
CMF, 44	felines, 3
definition, 23	interaction, host cells, 3–4
lysine plus threonine, 42	sexual phase, 5
micronutrient deficiency, 46	stagespecific markers, 4
PDCAAS, 45–46	Toxoplasmosis
QPM, 44	congenital toxoplasmosis, 2
QPM, 44 transferrin and hemoglobin levels, 43	discovery, 3
QPM, 44 transferrin and hemoglobin levels, 43 wheat bread, 43	
QPM, 44 transferrin and hemoglobin levels, 43	discovery, 3
QPM, 44 transferrin and hemoglobin levels, 43 wheat bread, 43	discovery, 3 laboratory diagnosis and treatment

IgG and IgM antibodies detection, 9
immunocompetent vs.
immunocompromised patients, 9
ophthalmologic examination, 10
serologic tests, 9
misdiagnosis/underdiagnosis, 2
outbreaks, 12–13
pathogenesis and human infection
spectra
asymptomatic infection, 7
immunodeficiency, 8
infection, pregnancy, 6-7
interferon-gamma (IFN-γ) production,
8
ocular toxoplasmosis, 8
risk factors, 7–8
transmission
cyst infection, ME-49 strain, 11

foodborne transmission, 5 food ingestion, 11 oocysts ingestion, 5 sausage samples, 11 tachyzoite, 5–6 undercook meat, 11 unpasteurized milk, 11 Trimester, 6–7

U

Unpasteurized milk, 11, 69

W

Water dessert gels, 128 Water troughs, 73–74 Wet distillers grain with solubles (WDGS), 84–85